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Our goal is to find simple inflationary models
which fit the data and can be implemented in
string theory or supergravity

In addition to describing inflation, we would like
also to describe dark energy and SUSY breaking



The simplest chaotic inflation model
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Planck data suggest that this simplest chaotic inflation
model should be modified.

The two vertical yellow lines in the next slide will show
the results of a minor modification of this model versus

the results of Planck 2015.
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OL-attractors




What is the meaning of a-attractors?

Start with the simplest chaotic inflation model
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Similar model has been proposed 30 years ago by Goncharov
and A.L. in JETP 59, 930 (1984). It was the first paper on
chaotic inflation in supergravity, but it was nearly forgotten.
It correspondsto v = 1/9
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Starobinsky model L=.,= (%R+ 1;;)

guv = (1+ ¢/3M?) g, P = \/gln (1 + 3522)
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B ldentified with the
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Simplest T-models
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Simplest T-models
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Coincides with the Starobinsky model
for a=1.



Why all of these different models
have similar cosmological predictions

for small o?



Stretching and flattening of the potential is similar to
stretching of inhomogeneities during inflation
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Potential in the original
variables with kinetic term
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Potential in canonical variables
flattens because of the
stretching near the boundary

Kallosh, AL 2013

All of these models predict
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More general potentials in terms of the original
conformal variables. Naively, one would not expect
inflation in theories with random supergravity
potentials:




Stretching upon converting to canonical variables in the Einstein
frame leads to inflation along dS valleys, and universality of
inflationary predictions, just as in the single-field models




The essence of c-attractors

Galante, Kallosh, AL, Roest 1412.3797
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Suppose inflation takes place near the pole att =0, and

V(0)>0 V'(0) <0, andV hasaminimum nearby

Then in canonical variables
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and, in the leading approximation in 1/N, almost independently on V(t)
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The essence of o-attractors

Galante, Kallosh, AL, Roest 1412.3797
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For a broad class of cosmological attractors, the spectral index ng
depends mostly on the order of the pole in the kinetic term, while

the tensor-to-scalar ratio r depends on the residue. Choice of the
potential almost does not matter, as long as it is non-singular at the
pole of the kinetic term. Geometry of the moduli space, not the
potential, determines much of the answer.
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Can we get a pole in the kinetic term from something more
fundamental than a theory of a single scalar field, for example in
supergravity?



Simplest example: T-model with o =1

K= -3log(l1—-22Z)+SS, W =mSZ

There is a boundary of the moduli space at |Z|%=1
The minimum of the potentialisat ImZ=S=0.
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o-attractors in supergravity
K = —3« ]Qg (1 — ZZ) + SS’ Disk variables

T — 1+ T—l _ 1—7

1—2Z° 1+Z
K = -3« log (T -+ T) -+ Sg Half-plane variables
Alternatively, one canuse K = —3alog [1 — 77 — Sg}

or
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We can stabilize S at 0, so in all final expressions after calculating
V one can take S = 0.

As required for the cosmological attractors, moduli space has a
boundary at T = 0 (or infinity), or, equivalently, at the disk

boundary |Z|%=1, for S =0.



These models with S = 0 describe a broad class of
cosmological attractors with universal cosmological
predictions and a supersymmetric vacuum with V = 0.

If we want to make sure that S = 0 generically, and
describe potentials with a minimum with SUSY

breaking and non-vanishing V (cosmological constant),
a novel ingredient helps a lot:

Nilpotent chiral superfields

Supersymmetry is there, but fermions may not have scalar partners.



Volkov, Akulov, 1972 Non-linearly realized supersymmetry: only fermions are
present

Rocek, Lindstrom, 1978-1979, Komargodski, Seiberg 2009: nilpotent superfields
Antoniadis, Dudas, Ferrara and Sagnotti, 2014

Ferrara, Kallosh, AL, 2014 application to cosmology, generic superconformal case

Nilpotent superfields: the main
rule for cosmology

Calculate potentials as functions of all superfields as
usual, and then DECLARE that S =0 for the scalar part of

the nilpotent superfield. No need to stabilize and study
evolution of the S field.



Nilpotent Superfields and String Theory

Supersymmetric KKLT uplift D3 and dS
Based on kappa-symmetric D-branes
Bergshoeff, Dasgupta, Kallosh, Wrase, Van Proeyen 2015

String Theory Realizations of
the Nilpotent Goldstino Kallosh, Quevedo, Uranga 2015

Anti D3 Brane/O3- Spectrum

fermion — fermion

.....................

2123 —> 2123
Massless spectrum:
RR Fluxes bosons > -bosons . .
N Fermion=Goldstino
& Anti D3 Bran,

(7 5 o)

(no scalars, no gauge fields)



Refined description of a-attractors in SUGRA

Carrasco, Kallosh, AL, Roest

One can use an equivalent formulation, with Kahler potential
preserving more of the symmetries of the theory.

Change the Kahler frame and use the most general W
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New variables, Carrasco, Kallosh, AL T =c¢ 50 7 7 = tanh i
Voo
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Some simple but instructive
examples



Pure de Sitter Supergravity

Ferrara, Kallosh, AL 2014: the action in the superconformal form

Bergshoeff, Freedman, Kallosh, Van Proeyen: a complete pure de
Sitter supergravity INCLUDING FERMIONS

S is a nilpotent chiral superfield; no other fields

K=85  W=+vVAS

The theory describes dS state without scalar fields

V=A>0



Next step: Poincare dS disk

1—-2727Z—8S
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V=A

The scalar field Z is massless. It lives on the dS Poincare disk

Z| <1



This model describes the Poincare disk of
radius R = 1 corresponding to dS universe
with the cosmological constant A




o—attractors

1—-Z7Z—SS
V(1—22)(1-22)

K = —3alog

Simplest T-model: W = \/a,u S 4
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Moduli space and Escher’s Angels and Devils

This is the simplest quadratic inflationary potential, with angels
and devils concentrated near the boundary of the moduli space
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The same potential in terms of the canonical
inflaton field foro.=1/3

. 1-2ZZ-8§5
K = —log o5 W=us2z

V(1-22)(1-Z2%)




Initial conditions for inflation

In the simplest chaotic inflation model m2¢?, inflation begins
at the Planck density under a trivial condition: the potential
energy should be greater than the kinetic and gradient energy
in a smallest possible domain of a Planckian size.

However, in a broad class of cosmological attractor models,
inflation can begin only when the energy density drops from
its Planck value by 10 orders of magnitude. Is it a problem?

Carrasco, Kallosh, AL 1506.0936



Potential defines infinite dS space, everywhere
except a small vicinity of the minimum

The universe is born at the Planck density, 10 orders of magnitude
above the dS disk. It may be very inhomogeneous, but if it expands,
density of matter decreases. In 10728 seconds it becomes dominated

by dS energy density. After that, the field slowly rolls to the minimum.
This solves the problem of initial conditions for inflation




Example: GL model of 1984 in modern formulation

1 . Goncharov, AL 1984
K:_§(<1>_c1>) AL 2015

W = % (Cosh V3P — cosh™? \/§<I>)

V(g) = mTZ (1 _ geﬁcbl)

Prediction is shown by the orange

GL potential is shown by red line
dot at the bottom
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GL model as an o-attractor

- Kallosh, AL 2015
a—1 (72— Z)Z)
2 1-7ZZ

K = —3log (1—ZZ+

W:gZ2(1—Z2)

GL model is the single-field model with o =1/9.
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SUSY breaking and uplift in GL model

Add to GL model a linear term containing a nilpotent field S,
and we get a simple inflationary model describing SUSY
breaking and the cosmological constant:

W:gz2(1—22)+M(S+1/b)

mg/QZM/b %:Mz(l—g/bZ)

Note that the cosmological constant appears only when SUSY is
broken. The term M(S+1/b) is similar to Polonyi superpotential.
However, the field S is nilpotent, it vanishes, so there is no
cosmological moduli associated with the Polonyi field.

Kallosh, AL 2015, Roest, Scalisi 2015, AL 2015, Scalisi 2015



o—attractors with SUSY breaking
and a cosmological constant

1 — 72
b

S — nilpotent superfield (no scalar component)

W:(S—I— )(\/§am222—|—M)

m - inflaton mass scale

M - SUSY breaking mass scale

3
. 2
A=M(1- )
For b= +/3 onehas A = 0. Changing b gives any desirable value
of the cosmological constant.

No need for a Polonyi field, so no cosmological light moduli problem.

Kallosh, AL 1502.07733, Carrasco, Kallosh, AL 1506.01708



Conclusions:

Because of the stimulating pressure from observations,
we found a new classes of theories with very interesting
properties: cosmological attractors. Their predictions
are stable with respect to strong modifications of the
inflaton potential, and they can describe in a very
economical way not only inflation but also dark energy
and SUSY breaking.



Conclusions:

For 30 years, one of our main goals was to use
observations to reconstruct inflationary potential.
However, in this new class of theories, cosmological
predictions depend mostly not on the potential, but on

geometry of the moduli space.

Thus investigation of geometry of space-time may
provide information about geometry of the moduli space.




